B.A./B.Sc. $2^{\text {nd }}$ Semester (Honours) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMH2CC03
 (Real Analysis)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any ten questions
$10 \times 2=20$
(a) Construct a bounded set of real numbers with exactly three limit points.
(b) Is the sequence $\left\{(-1)^{\mathrm{n}} / \mathrm{n}\right\}$ a Cauchy sequence? Justify your answer.
(c) Give an example of an infinite series $\sum_{n=1}^{\infty} a_{n}$ such that $\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)+\ldots$ converges but $a_{1}+a_{2}+a_{3}+a_{4}+\ldots$ diverges.
(d) Determine whether the sequence $\left\{-2 n+\sqrt{4 n^{2}+n}\right\}$ is a Cauchy sequence or not.
(e) If $\sum_{n=1}^{\infty} a_{n}$ converges then prove that $\lim _{n \rightarrow \infty} a_{n}=0$. Is the converse true? Justify.
(f) Find $\sup A$ and $\inf A$, where $A=\left\{x \in R: 3 x^{2}+8 x-3<0\right\}$.
(g) Show that the set of all even integers is not compact.
(h) If $\mathrm{p}>0$ and t is a real number, then find the limit of the sequence $\left\{\mathrm{n}^{\mathrm{t}} /(1+\mathrm{p})^{\mathrm{n}}\right\}$.
(i) If y is a positive real number then show that there exists a natural number m such that $0<1 / 2^{\mathrm{m}}<\mathrm{y}$.
(j) Find the derived set of the set $\mathrm{S}=\left\{(-1)^{\mathrm{n}}(1+1 / \mathrm{n}): \mathrm{n} \in N\right\}$
(k) Show that the sequence $\{(1-1 / n) \cos (\mathrm{n} \pi / 2)\}$ is not convergent, but has a convergent subsequence.
(1) State Archimedean property of real numbers and hence show that $\lim _{n \rightarrow \infty} \frac{1}{n}=$ 0.
(m) Verify that the series $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ is not convergent.
(n) Construct an unbounded sequence with exactly one subsequential limit.
(o) If $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ is a sequence of real numbers and if $\mathrm{s}_{\mathrm{n}} \leq \mathrm{M}$ for all $\mathrm{n} \in N$, and if $\lim _{n \rightarrow \infty} s_{n}=L$, then prove that $\mathrm{L} \leq \mathrm{M}$.

2. Answer any four questions

(a) For any two real numbers a, b with $a<b$, prove that there exists a rational number r such that $a<r<b$.
(b) Find the limit superior and limit inferior of the sequence $\left\{1+(-1)^{n}+\frac{1}{2^{n}}\right\} \quad[3+2]$
(c) Prove that every bounded decreasing sequence is convergent
(d) (i) If $\sum_{n=1}^{\infty} a_{n}$ diverges then prove that $\sum_{n=1}^{\infty} n a_{n}$ also diverges.
(ii) Let A and B be two subsets of R. If int $A=$ int $B=\phi$ and if A is closed in R, then find int $(A \cup B)$.
(e) For any sequence $\left\{a_{n}\right\}$ of positive real numbers, prove that $\lim _{n \rightarrow \infty}$ inf $\frac{a_{n+1}}{a_{n}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$.
(f) (i) If θ is a rational number, then examine whether the sequence $\{\sin (\mathrm{n} \theta \pi)\}$ has a limit.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ is convergent then test the convergence of the series $\sum_{n=1}^{\infty} \frac{a_{n}}{\log (n+1)}$.
3. Answer any two questions
(a) (i) Let S be a sequence of real numbers. Show that every subsequence of a subsequence of S is itself a subsequence of S.
(ii) Let a sequence of positive real numbers $\left\{x_{n}\right\}$ converge to x. Prove that the sequence $\left\{\sqrt{x_{n}}\right\}$ converges to \sqrt{x}.
(b) (i) Let S and T be two nonempty bounded subset of R such that S is a subset of T. Prove that $\inf T \leq \inf S$.
(ii) Test for convergence of the series $\frac{3}{5} x^{2}+\frac{4}{5} x^{3}+\frac{15}{17} x^{4}+\frac{12}{13} x^{5}+\cdots, x>0$.
(c) (i) If p is a limit point of a subset S of real numbers, then prove that there exists a countably infinite subset of S having p as its only limit point.
(ii) Let S be a non-empty subset of real numbers which is bounded below and T $=\{-x: x \in S\}$. Prove that the set T is bounded above and Sup $T=-\inf S$.
(d) (i) Let A be a subset of R. One of the following statements is true and the other [3+2] is false. Identify the true statement and prove it. Identify the false statement with proper arguments.
A. Every interior point of A is a limit point of A.
B. Every limit point of A is an interior point of A.
(ii) Examine the convergence of the sequence $\left\{x_{n}\right\}$ where $x_{n}=\sum_{k=1}^{n} \frac{3 k^{2}+2 k}{2^{k}}$.

